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The linear stability of the Stokes layer induced in a fluid contained within a long
cylinder oscillating at high frequency about its longitudinal axis is investigated. The
disturbance equations are derived using Floquet theory and the resulting system solved
using pseudo-spectral methods. Both shear modes and axially periodic centripetal
disturbance modes are examined and neutral stability curves and corresponding
critical conditions for instability identified. For sufficiently small cylinder radius it is
verified that the centripetal perturbations limit the stability of the motion but that
in larger-radius configurations the shear modes associated with the Stokes layer take
over this role. These results suggest a possible design, free of entry-length effects, for
experiments intended to examine the breakdown of oscillatory boundary layers.

1. Introduction
The stability of time-periodic laminar flows is a topic of long-standing theoretical

and practical importance. A paradigm for many types of oscillatory flow is the
flat Stokes layer, which is itself one of the relatively few exact solutions of the
incompressible Navier–Stokes equations. While there is overwhelming experimental
evidence that this flow is unstable, only relatively recently has there been any
self-consistent theoretical analysis which suggests this is the case. A number of
early studies, for example those by von Kerczek & Davis (1974) or Hall (1978),
were constrained by computational issues that meant they were only able to access
parameter regimes in which the flow is linearly stable. Blondeaux & Seminara (1979)
used a slowly varying approximation to conclude that at relatively modest Reynolds
numbers the Stokes layer might be unstable over parts of the oscillation close to flow
reversal, although, over the complete cycle, perturbations experience net decay. The
first report of a neutral stability curve, in the usual Reynolds number–wavenumber
parameter space, appears to be that of Blennerhassett & Bassom (2002), hereafter
referred to as BB02. There we used a semi-analytical method first proposed by
Seminara & Hall (1976), who were concerned with the centrifugal stability of curved
Stokes layers, and later adapted by Hall (1978) for the flat Stokes layer problem.
In BB02 we were able to find a critical Reynolds number for the instability of
the flow induced by an oscillating plate bounding a semi-infinite layer of fluid. A
subsequent investigation (Blennerhassett & Bassom 2006) (BB06) has extended this
work to examine the stability of oscillatory flows within a finite-gap channel and in
a circular pipe. The linear disturbance equations were solved using Floquet theory
and pseudo-spectral numerical techniques and the earlier results of BB02 retrieved in
appropriate wide-channel limits.
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One difficulty commented upon in both BB02 and BB06 is the large discrepancy
between the theoretical predictions and experimental observations of the onset of
instability in flat Stokes layers. Details of various experimental results are described
in both those papers but, in brief, many practical realizations of the instability
suggest that onset occurs at a Reynolds number less than one half that predicted
by linear theory. An indication of the difficulties associated with these experiments
is that there is still no agreed definite value for the transition Reynolds number, as
there is significant variation in the results obtained by different researchers. Several
reasons for the discrepancies between theory and experiment have been proposed.
An analytical study by Blondeaux & Vittori (1994) and numerical simulations by
Spalart & Baldwin (1988), Verzicco & Vittori (1996) and Vittori & Verzicco (1998)
have suggested that wall imperfections or other external sources might play important
roles in triggering the appearance of turbulence in oscillatory flows. Blondeaux &
Vittori (1994) used a two-dimensional analysis to show that the flow deviates from
the laminar regime because of the growth of perturbations during certain phases of
the oscillation cycle; the origin of this phenomenon lies in a resonance effect. Further
simulations by Akhavan, Kamm & Shapiro (1991) showed that, at sufficiently high
Reynolds numbers, three-dimensional disturbances can grow on pre-existing two-
dimensional waves. By way of an alternative, Wu (1992) proved how a resonant
triad mechanism operating between a certain two-dimensional wave and a pair of
three-dimensional modes can lead to a finite-time singularity. The direct numerical
simulations of Vittori & Verzicco (1998) seem to indicate that the Akhavan et al. (1991)
process is the likelier in practice, and recent calculations by Costamagna, Vittori &
Blondeaux (2003) throw light on more strongly nonlinear aspects of transition. It
should be noted that the work described above was probably carried out under the
conjecture, expressed most strongly by Yang & Yih (1977), that the flat Stokes layer
is linearly stable. While the results summarized above will continue to have relevance,
the linear instability predictions in BB02 and BB06 allow alternative interpretations
of the existing experimental results.

Another possibility for the wide variation between the theory and experimental
observations of the onset of instability in flat Stokes layers is that in practice it is
hard to ensure that disturbances remain strictly within the scope of linear theory.
Further, oscillating flows in channels or pipes are usually generated by a combination
of an oscillating piston and a contraction in the flow. The underlying assumption
is that, sufficiently far from the piston or the contraction, any disturbances caused
by this device will decay leaving a velocity profile close to that appropriate to an
infinitely long channel or pipe. However, one implication of the results described in
BB06 is that as critical conditions are approached the spatial decay of disturbances
becomes increasingly weak and the influence of the piston or contraction extends
further and further into the flow. This behaviour, combined with the acknowledgment
that conducting low-background-noise experiments in long oscillating channels or
pipes is far from easy, is a motivating factor for the work to be described here.
It is hoped that better agreement between theoretical predictions and experimental
measurements of the stability of oscillatory shear layers could be achieved in a closed
system free of the effects of a driving piston. Thus we proposed to study the linear
instability of shear modes present in the Stokes layer induced in a fluid contained
within a torsionally oscillating long circular cylinder.

The calculations presented here allow incorporation of the effects of curvature on
the stability of the flat oscillating layers studied in BB02 and BB06, although the
curved geometry means that centripetal instability could also be present in the system.
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Seminara & Hall (1976) investigated the stability of the Stokes layer generated on
an infinitely long cylinder that oscillates harmonically about its longitudinal axis
while immersed in an unbounded viscous fluid. In such a flow, instability appears
as axisymmetric Taylor vortices which are periodic in the axial direction. A similar
mechanism is operative in the problem studied by Papageorgiou (1987) who was
concerned with the stability of oscillatory flow through a curved pipe. Here the flow
was driven by a sinusoidal pressure gradient and the instability appeared on the outer
bend of the pipe. Both these centripetal instability mechanisms require significant
curvature in the flow streamlines and it is therefore likely that for large enough
cylinders the flow considered in our work will be more susceptible to a shear-mode
instability than to centripetally induced structures. To determine which disturbance
form defines the linear instability of the flow, both types will be examined.

The remainder of this study is laid out as follows. The governing linear stability
equations are derived in § 2, where the numerical methods are also outlined. The
results for both shear and centripetal modes are discussed in § 3, which is followed by
a few final remarks.

2. Formulation and numerical methods
Consider the motion induced in a Newtonian fluid (of kinematic viscosity ν)

within an infinitely long circular cylinder of radius ro by oscillating it about its
longitudinal axis with frequency ω. If there are no disturbances then a unidirectional
azimuthal flow is generated. A dimensionless form for this basic flow is obtained
if all lengths are scaled on

√
2ν/ω, all velocity components on V0, the amplitude

of the velocity oscillations, and a non-dimensional time τ =ωt is introduced. In
standard cylindrical polar coordinates (r, θ, z) the undisturbed basic flow takes the
form

v = VB(r, τ ) = Re

{
J1((1 − i)r)

J1((1 − i)H )
eiτ

}
= v1(r)e

iτ + v−1(r)e
−iτ , u = w = 0, 0 � r � H, (2.1)

where the velocity vector u =(u, v, w) has components corresponding to the coordi-
nates (r, θ, z) and J1 is the Bessel function of order unity. The non-dimensional radius
of the cylinder is H ≡ ro

√
ω/2ν.

For large values of H it is expected that the basic flow (2.1) will approximate
that of a flat plate oscillating in its own plane and bounding a semi-infinite layer of
fluid. The linear stability of this planar basic flow was examined in BB02 by looking
for disturbances in the form of two-dimensional waves, periodic in the direction
of oscillation of the bounding plate and travelling in that direction. Here we first
consider the linear stability of the basic flow (2.1) to two-dimensional travelling-
wave perturbations analogous to those of the planar geometry of BB02. Thus the
perturbations considered initially will have azimuthal and radial velocity components
only, corresponding to velocity components parallel and normal to the oscillating
bounding surface.

The perturbed basic flow having the structure described above can be expressed in
the form

(u, v, w) = (0, VB, 0) + ε

(
1

r

∂Ψ

∂θ
, −∂Ψ

∂r
, 0

)
, (2.2)
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where ε � 1 and Ψ denotes the stream function of a two-dimensional disturbance.
The stream function Ψ is now decomposed to expose explicitly the periodicity of the
perturbation in the azimuthal direction and any exponential growth with time. As the
basic flow is periodic in time, Ψ (r, θ, τ ) must have a Floquet structure and hence has
the form

Ψ = eµτeiqθψ(r, τ ) + complex conjugate, (2.3)

where ψ(r, τ ) is taken to be 2π-periodic in τ , any exponential growth or decay of Ψ

being incorporated in µ; the azimuthal wavenumber q is necessarily an integer. With
the velocity field given by (2.2) and (2.3) the linearized equation for ψ is then

∂

∂τ
Lqψ =

{
1

2
Lq − µ − iqR

r
VB

}
Lqψ +

iqR

r
ψL1VB, (2.4)

where the operator Lq is defined by

Lq ≡ ∂2

∂r2
+

1

r

∂

∂r
− q2

r2

and the Reynolds number R, which is the main parameter determining the stability
of the flow, is given by

R =
V0√
2νω

.

(This form for R, effectively based on the characteristic length 1
2

√
2ν/ω, removes some

factors of one half from the linear stability equation (2.4).)
Equation (2.4) needs to be solved subject to the usual no-slip boundary conditions

ψ = ψr = 0 on r = H, (2.5)

together with suitable regularity requirements at the origin r = 0. The growth rate
µ is complex, while the time symmetries of the equation allow all solutions to be
obtained by restricting the imaginary part of µ to the interval µi ∈ [0, 1

2
], as described

in BB02. The unknown function ψ is decomposed into harmonics,

ψ =

∞∑
n=−∞

ψn(r)e
inτ , (2.6)

so that equating coefficients of the harmonics in (2.4) results in the infinite system of
ordinary differential equations

(Lq − 2µ − 2in)Lqψn =
2iqR

r
[(Lqψn−1 − 2iψn−1)v1 + (Lqψn+1 + 2iψn+1)v−1]. (2.7)

The numerical solution of the system (2.7) was obtained using the pseudo-spectral
techniques described by Fornberg (1996) and Trefethen (2000). Analogous methods
were used in BB06 so here only the key steps in the numerical procedures are presented
and the important differences highlighted. Each differential operator appearing in the
governing equations (2.7) was replaced by its pseudo-spectral matrix approximation,
with each ψn(y) being represented by a vector ψn of its function values at the
computational grid points. As is usual in pseudo-spectral methods, the problem was
solved on a Chebyshev mesh, here containing 2K +1 points and spanning the interval
−H � r � H . Thus a discrete approximation to the equations (2.7) can be written as

−iqRM̃ψn+1 + (L−1V − inI)ψn − iqRMψn−1 = µψn, (2.8)
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for each integer n. Here I is the appropriately sized identity matrix and L, V and
M are pseudo-spectral differentiation matrices representing the continuous operators
listed:

Lq → L, L2
q → 2V and M = L−1(r−1v1(L − 2iI)). (2.9)

Finally, M̃ denotes the complex conjugate of M and, allowing for an obvious abuse of
notation, v1 and r−1 in (2.9) denote square matrices with the mesh values of v1(r) and
r−1 down the diagonal. Note that for the domain −H � r � H the quantity r−1v1(r)
is an even function of r and is bounded as r → 0.

For calculating the stability of the flow the computational domain −H � r � H

was reduced to 0 � r � H by exploiting the symmetries of the stream function ψn(r).
For even integer wavenumbers q the stream function is even in r while ψn(r) is
odd in r when q is odd. Appropriate kinematic conditions (Batchelor & Gill 1962)
were then imposed at the origin and the usual no-slip requirements applied at the
boundary r = H (see BB06). A finite system of equations was obtained by truncating
the Fourier series (2.6) for ψ and setting ψn = 0 for |n| >N , where N needs to be
typically 200–300 to locate neutral conditions. The system (2.8) then can be written
as an algebraic eigenvalue problem

AΦ = µΦ (2.10)

where A is a sparse, block diagonal matrix and the vector Φ is given by

ΦT =
(
ψT

N ψT
N−1 · · · ψT

0 · · · ψT
−N

)
. (2.11)

The eigenvalues µ and eigenvectors Φ of this problem were found using the sparse-
matrix eigenvalue routines in Matlab. Checks on the consistency and accuracy of the
eigenvalue µ and the eigenfunctions ψn similar to those in BB06 were carried out
and the interested reader is directed to that paper for further details. In particular,
the main difficulty that had to be overcome was the appearance of numerical noise
in the large-n eigenfunctions when N was greater than about 120. As in BB06, a
rescaling of the eigenfunctions ψn that accounted for the exponential decay of these
Fourier coefficients removed the unwanted noise and enabled efficient calculation of
the eigenvalue to at least eight significant figures over a wide range of parameter
space.

When conducting the numerical work it was found that to maintain the accuracy
of the solutions the number of points in the Chebyshev mesh had to increase
as H increased, thereby causing the run time of the codes to grow markedly.
However, the main activity of the disturbance was seen to be concentrated relatively
close to the oscillating cylinder with essentially no disturbance present around the
centre of the cylinder, suggesting that it is only the region close to the boundary that
needed accurate numerical resolution. Indeed, BB06 found that the critical conditions
for the instability of oscillatory flow in a channel are effectively the same as those for
the flow of a semi-infinite layer of fluid overlying an oscillating plate, provided that
the channel half-width is at least 16 times the Stokes layer thickness. Accordingly,
although the geometry inherent in the basic flow (2.1) is the primary focus of our
work, it proved computationally convenient to consider instead the oscillatory flow
in an annular domain h � r � H , where the non-dimensional radius of the inner
bounding cylinder is defined as h ≡ ri

√
ω/2ν. In this configuration the basic flow
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generated by oscillating the outer cylinder, with the inner cylinder fixed, is given by

v = VB(r, τ )

= Re

{
H

(1)
1 ((1 − i)h)H (2)

1 ((1 − i)r) − H
(2)
1 ((1 − i)h)H (1)

1 ((1 − i)r)

H
(1)
1 ((1 − i)h)H (2)

1 ((1 − i)H ) − H
(2)
1 ((1 − i)h)H (1)

1 ((1 − i)H )
eiτ

}
, (2.12a)

u = w = 0, h � r � H, (2.12b)

where H
(1)
1 and H

(2)
1 denote order-one Hankel functions of the first and second kind,

respectively. In passing, we remark that although it is possible to write (2.12) in terms
of other special functions, the attraction of the Hankel function is that it exhibits
explicitly the exponential decay of the basic flow away from the outer cylinder.

The use of the annular basic flow (2.12) required a few changes in the details of the
numerical scheme described above. As the domain of interest no longer extends to the
origin, the regularity requirements at r =0 in the full cylinder calculations are replaced
by the no-slip conditions ψ =ψr = 0 on r = h (cf. (2.5)). Further, the Chebyshev mesh
now covers only h � r � H and the distinction between even and odd wavenumbers
q is no longer relevant as there was no need to invoke any symmetry properties of
ψn(r). In all other respects the numerical strategy is unchanged.

Tests were carried out to determine when the stability properties of the annular
basic flow (2.12) constituted an accurate approximation to those of the basic flow in
the cylinder (2.1) for the case of the shear-mode disturbances considered thus far.
Some details of these tests will be given in § 3, but the main result was that provided
H −h > 16 the stability characteristics of the two basic flows were essentially the same
for all H > 16. This conclusion is in line with the findings of BB06 and allowed the
stability properties of the full cylinder flow to be calculated more efficiently via an
annular-flow problem.

2.1. Centripetal modes

Previous analysis of centripetal instability in oscillatory flow (Seminara & Hall 1976;
Riley & Laurence 1976; Papageorgiou 1987) focused on finding a critical Taylor
number for instability. Such calculations contain the implied limit of large Reynolds
numbers and hence are not strictly relevant to the finite-R flow considered here.
Thus, for the case of centripetally unstable perturbations to the basic flow (2.1), the
derivation of the disturbance equations follows the argument for the shear modes
described above rather than the traditional narrow-gap Taylor-limit argument used
by Riley & Laurence (1976). Briefly, the disturbed flow is taken to be axisymmetric
and to have the structure

(u, v, w) = (0, VB, 0) + ε

(
1

r

∂Ψ

∂z
, ṽ, −1

r

∂Ψ

∂r

)
. (2.13)

The assumption of a Floquet decomposition in the form

(Ψ, ṽ) = eµτeiaz(ψ(r, τ ), φ(r, τ )) + complex conjugate, (2.14)

where both ψ and φ are 2π-periodic in τ , results in the governing equations

Maψτ + µMaψ − 2iaRVBφ = 1
2
M2

aψ, (2.15a)

φτ + µφ + iar−2R(rVB)rψ = 1
2
(Maφ + 2r−1φr − r−2φ), (2.15b)
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where Ma ≡ ∂2
r − r−1∂r−a2. When ψ and φ are decomposed into their Fourier

components,

(ψ(r, τ ), φ(r, τ )) =

( ∞∑
n=−∞

ψn(r)e
inτ ,

∞∑
n=−∞

φn(r)e
inτ

)
(2.16)

and like powers of eiτ collected in system (2.15), the governing equations in the
frequency domain become

(in + µ)Maψn − 2iaR(v−1φn+1 + v1φn−1) = 1
2
M2

aψn, (2.17a)

(in + µ)φn + iar−2R((rv−1)rψn+1 + (rv1)rψn−1) = 1
2
(Maφn + 2r−1φnr − r−2φn).

(2.17b)

These equations need to be solved subject to the requirements that ψn = ψnr = φn =0
on r = H and suitable regularity conditions at the origin r = 0.

The numerical solution of the system (2.17) was obtained using pseudo-spectral
techniques analogous to those used for the solution of (2.7). Here each ψn(r) and
each φn(r) was represented by a vector of function values ψn or φn on a suitable
Chebyshev mesh. Each differential operator appearing in (2.17) was replaced by its
pseudo-spectral matrix approximation, and with Φ now defined as

ΦT =
(
ψT

N ψT
N−1 · · · ψT

0 · · · ψT
−N φT

N φT
N−1 · · · φT

0 · · · φT
−N

)
(2.18)

the system (2.17) can be written as an algebraic eigenvalue problem

BΦ = µΦ (2.19)

where B is a sparse, block diagonal matrix. The eigenvalues µ and eigenvectors Φ of
this problem were again found using Matlab.

The implementation of the above numerical algorithm was checked by solving the
equations (2.15) on an annular domain with the basic flow and boundary conditions
appropriate to the problem studied by Seminara & Hall (1976). Theoretically,
Seminara & Hall (1976) considered an infinitely long cylinder oscillating in an
unbounded fluid, but, for both their numerical calculations and their experimental
realizations, they actually used an annular region. The basic flow in this domain, with
the inner cylinder oscillating and the outer cylinder at rest, is given by

v = VB(r, τ )

= Re

{
H

(1)
1 ((1 − i)H )H (2)

1 ((1 − i)r) − H
(2)
1 ((1 − i)H )H (1)

1 ((1 − i)r)

H
(1)
1 ((1 − i)H )H (2)

1 ((1 − i)h) − H
(2)
1 ((1 − i)H )H (1)

1 ((1 − i)h)
eiτ

}
, (2.20a)

u = w = 0, h � r � H, (2.20b)

which is just (2.12) with h and H interchanged in the expression for v. In Seminara &
Hall (1976) the parameter governing the stability of the flow is the Taylor number
T =(2V 2

0 /riω
2)

√
ω/ν, as these authors effectively used a narrow-gap approximation

based on the small thickness of the Stokes layer compared with the radius of
the oscillating cylinder. Expressed in terms of the parameters used here, we have
T =2

√
2R2/h and, as the length scales used in the current work and in Seminara &

Hall (1976) are identical, the corresponding wavenumber values are also the same.
For comparison purposes, a value for the growth rate µ, which is real in this case,
is given by Seminara & Hall (1976) as µSH = 0.002 264 383 when a = 0.858 52 and
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√
h 4 8 16 32
µ −1.135×10−1 −2.903×10−2 −5.706×10−3 2.669×10−4

√
h 64 128 256 512
µ 1.769×10−3 2.145×10−3 2.239×10−3 2.263×10−3

Table 1. Values of µ from the solution of (2.17) with the annular basic flow (2.20) as an
approximation to the conditions in Seminara & Hall (1976). The wavenumber is a =0.858 52,

the Reynolds number satisfies R2 = 165
√

2h/4 and H = h + 16. The calculations used 64
Chebyshev subintervals in the flow domain and the Fourier series (2.16) only included
harmonics with |n| � 10. In the limit h → ∞ Seminara & Hall (1976) gives the result
µSH = 0.002 264 383.

T = 165. The values obtained for µ from the solution of (2.17), with a =0.858 52,
R2 = 165

√
2h/4 and the basic flow (2.20), are given in table 1.

As reported by Seminara & Hall (1976) only very few harmonics in the Fourier
series (2.16) are needed for an accurate numerical solution of the system (2.15).
Further, a log–log plot of the difference µSH − µ against h, for the values of µ in
table 1, shows that this quantity diminishes like h−1, as should be expected when
comparing solutions of the full equations (2.15) with those of the narrow-gap (or
Taylor) limit. This check also demonstrates that the Taylor limit of the governing
equations provides a good asymptote to the results obtained at finite R.

3. Results
Neutral conditions for the shear modes were obtained by solving system (2.7) with

the basic flow (2.1) at fixed values of H and q . The Reynolds number R was varied
until the real part of µ satisfied |µr | < 10−3. During the iteration an approximation
to dµr/dR was calculated and values in the range (0.004, 0.006) were typical, close
to neutral conditions. Thus, accepting as zero a value of O(10−3) for µr results in an
error of less than 0.25 in the neutral Reynolds number and, as this quantity is always
greater than 700, a relative error of at most 0.04% in the stated neutral R is obtained.
At a given value of H this process was repeated for several contiguous integers q = 2k

or q = 2k + 1, always ensuring that sufficiently many values of q were examined so
that a minimum in the value of the neutral Reynolds numbers, as a function of q ,
could be determined. From this finite set of neutral conditions the value of q with
the smallest neutral R was selected to define the critical Reynolds number Rc at
the given H . Some results are shown in figure 1, which illustrates the behaviour of
the critical Reynolds number for instability, as a function of cylinder radius H , for
H up to 50. The curves in figure 1 result from calculations starting at H = 16 and
incrementing H in steps of 0.2 up to H = 50. At the smaller values of H the Fourier
series (2.6) was truncated at N = 400 and only 112 subintervals were needed in the
Chebyshev mesh across the diameter of the cylinder. For the largest H in this figure
the number of Chebyshev subintervals on the diameter had to be increased to 176
to maintain adequate resolution of the region occupied by the Stokes layer on the
cylinder wall, while the number of Fourier components needed could be reduced to
around 250 owing to the reduction in Reynolds number occurring in the calculations.

For a prescribed azimuthal wavenumber q one can envisage a curve of R as a
function of H , say R = RN (q, H ), defining neutrally stable conditions for the given
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Figure 1. Even- and odd-integer-wavenumber critical conditions as a function of H . The
even-integer-wavenumber critical conditions are shown by the solid line and the values of
the wavenumber q are shown for the first few parabola-like subsections of the critical curve.
The dashed line gives the critical conditions for the odd-integer-wavenumber disturbances.

value of q . The solid line in figure 1 is now defined as

R = min
k∈�

RN (2k, H ),

so that the point labelled c6,8 in this figure is the intersection of the curves RN (6, H )
and RN (8, H ). Similar considerations apply to the critical curve for the odd-integer
wavenumbers, shown as the dashed curve in figure 1, and hence the point denoted
c7,9 lies at the intersection of the curves RN (7, H ) and RN (9, H ).

It is to be expected that each curve R =RN (q, H ) will have a minimum near where
the ratio q/H is close to the critical wavenumber for the instability of a Stokes
layer on an infinite flat plate. As the critical wavenumber for the flat Stokes layer
is fixed at ac∞ ≈ 0.377 (BB02), the critical azimuthal mode number q must increase
as H increases. The overlapping of these individual RN (q, H ) curves for fixed q and
increasing H is then the origin of the sawtooth-type profile seen in figure 1.

To access values of H > 50 it was computationally more efficient to perform the
necessary calculations on an annular domain, the basic flow now being given by (2.12).
Following the results of BB06, the inner-cylinder radius h was taken as h = H − 16
and the annular gap then was discretized with a Chebyshev mesh of 64 subintervals
for all values of H . No-slip boundary conditions were implemented on both the
inner and outer cylinders and hence there was no need to use the symmetry or
regularity conditions relevant to the cylindrical domain. With the critical conditions
for the annular domain determined using the same algorithm as outlined above
for the circular domain there was at least four-figure agreement between the two
sets of critical Reynolds numbers for 16<H < 50. A calculation at H =72 using
224 Chebyshev subintervals in the diameter of the pipe gave a critical R of 721.6671,
while the calculation in the annular domain gave 721.6658 for the same outer cylinder
radius H . The agreement between these two methods for solving the governing stability
equations (2.4) provides an internal check on the implementation of the numerical
methods used and confirms the observations in BB06 that a domain wider than 16
Stokes layer thicknesses is effectively infinite as far as the shear-mode linear stability
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properties of Stokes layers are concerned. The calculated critical conditions for H > 50
will be shown later, along with the critical results for the centripetal modes.

The general trend in the behaviour of Rc, illustrated in figure 1, is as suggested
in the introduction: at relatively small cylinder radii the shear modes are less easily
excited since it is difficult to achieve a ratio q/H close to ac∞, the critical wavenumber
for the infinite flat plate, while at large values of H the curvature of the system
becomes increasingly less significant and the critical conditions tend to those of the
flat Stokes layer. While a large-H asymptote could be calculated, it is of little practical
use in predicting which type of disturbance limits the stability of the basic flow (2.1).
The same statement holds true for the large-H , or Taylor, limit of (2.15), but for
centripetal instabilities the large-H asymptote turns out to be extremely accurate at
finite values of H and thus saves considerable computational effort in locating critical
conditions for the centripetal instability modes.

The analysis of equations (2.15) for large values of H begins by setting r = H + η,
where −H � η � 0, and rescaling the stream function via ψ → (H/R)ψ . Then in the
limit H → ∞ with the Taylor number T = R2/H held fixed, the governing system
(2.15) reduces to

M̂aψτ + µM̂aψ − 2iaT V̂Bφ = 1
2
M̂2

aψ, φτ + µφ + iaV̂Bηψ = 1
2
M̂aφ, (3.1)

where M̂a = ∂2
η−a2, with boundary conditions ψ = ψη =φ = 0 on η = 0 and ψ, φ → 0

as η → − ∞. In this limit the basic flow (2.1) has the form

V̂B = e(1+i)ηeiτ + e(1−i)ηe−iτ = v̂1e
iτ + v̂−1e

iτ .

A Fourier decomposition of (ψ(η, τ ), φ(η, τ )), as in (2.16), reduces the system (3.1) to
a problem amenable to the pseudo-spectral solution method developed for the system
(2.17). Papageorgiou (1987) showed that the most unstable disturbances in a Stokes
layer on a surface with positive curvature have the form

(ψ, φ) =

( ∞∑
n=−∞

ψ2n+1(η)ei(2n+1)τ ,

∞∑
n=−∞

φ2n(η)e2inτ

)
,

and the results obtained here also have this structure, as indicated by the neutral
curve of T as a function of axial wavenumber a, in figure 2. However, our results also
showed that the disturbance structure for which ψ(η, τ ) contains only even harmonics
in time, as in Seminara & Hall (1976), also appears in the neutral curve but not near
critical conditions.

There is a well-defined critical value of T = Tc =5964.03 with corresponding
a = ac = 1.9115. This value for Tc leads to the asymptotic result that the solution
of the original centripetal system (2.15) has the property that Rc ∼ 77.2

√
H for large

H . This relationship is shown on figure 3 together with the results of computations
on the full system (2.15). It is seen that the asymptotic result is surprisingly good over
a wide range of cylinder radii and is an accurate predictor of when our flow is likely
to be unstable to axially periodic centripetal modes. The amalgamation of our results
shown on this figure illustrates a number features that we anticipated at the outset.
For sufficiently small cylinder radius the centripetal modes are likely to be the more
significant and the shear modes would probably not be detected in practice. However,
as the size of the cylinder grows, the onset of instability of the two modes swaps over
and the shear modes now occur at a lower value of R than the centripetal instabilities.
This exchange occurs when H ≈ 86, so that for H > 86 there is the possibility
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Figure 2. The neutral curve for centripetal instabilities, T vs. a, from the solution of the
system (3.1). The solid line denotes the mode where φ (ψ) contains only even (odd) harmonics
in time, as in Papageorgiou (1987); the dashed line denotes the mode where φ (ψ) contains
only odd (even) harmonics in time; cf. the results of Seminara & Hall (1976).
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Figure 3. Critical conditions for instability to Stokes-layer shear modes and centripetal modes.
The calculated critical conditions from the solution of the system (2.15) are shown with +
signs; the asymptote, Rc ∼ 77.2

√
H , provided by the critical conditions from (3.1) is shown by

the chain line. The shear-mode critical conditions are shown by the solid line and the dotted
line. Further details on the shear instabilities are given in the caption to figure 1.

that the shear modes associated with the Stokes layer would be experimentally
observable.

4. Remarks
The results reported above indicate that for cylinder radii larger than 86 Stokes-

layer thicknesses the shear-mode instability of a flat Stokes layer, described by BB02,
determines the stability of the flow in a long torsionally oscillating cylinder. As
the kinematic viscosity of water is very small, Stokes layers in water are very thin
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even at quite low (dimensional) frequencies. At a frequency of 1 Hz, or 2π rads −1,
as used by Seminara & Hall (1976), the thickness of a Stokes layer in water is
about 5.6 × 10−4 m. The requirement that H > 86 translates to the condition that the
dimensional radius of the cylinder, ro, is larger than about 50 mm, which would result
in a quite modest-sized piece of experimental equipment. However, from a practical
point of view it is the critical Reynolds number condition which puts the stronger
constraint on any physical apparatus. With the amplitude of the oscillation velocity
of the cylinder, V0, defined in terms of the angular amplitude of displacement θ0 by
V0 = ωroθ0, the requirement that Reynolds numbers above 710 be attained leads to
the condition that Hθ0 > 710. If θ0 is arbitrarily set to unity, then for a frequency of
1 Hz with water as the working fluid the dimensional radius of the cylinder would
need to be at least 710 × 0.000 56 ≈ 0.4 m. A smaller apparatus could be obtained by
using a less viscous fluid or a higher frequency of oscillation. For these large values of
H the critical conditions for the oscillating cylinder tend to those of the semi-infinite
flat plate. Further, we recall the result of BB06 that the stability properties of the
oscillatory channel flow are essentially those of the semi-infinite flat plate (BB02)
when the channel half-width is greater than about 16. Thus here it is expected that
an annulus with a gap greater than roughly 16 Stokes layer thicknesses could be
used instead of the full cylinder, thereby reducing the volume of working fluid needed
and also allowing the positioning of measuring equipment inside the stationary inner
cylinder.

The results of BB02, more explicitly demonstrated in BB06, also point to an
added bonus for experiments based on a torsionally oscillating cylinder. With piston-
driven or pressure-gradient-driven flows the disturbance structure contains very-high-
frequency oscillations even when the flow is laminar and stable. When the bounding
surfaces drive the basic flow the disturbance structure contains far fewer large-
amplitude high-frequency components, thereby allowing lower sampling rates in any
measurement system.

For the model flow examined here to provide a practical apparatus capable of
locating the critical conditions for the instability of essentially planar Stokes layers,
two conditions must be met. Firstly the necessary truncation of an infinitely long
cylinder to a finite length must not significantly change the basic flow away from the
required ideal basic flow, as expressed by (2.1) or (2.12), and secondly the presence of
endwalls must not affect the perturbations that are assumed to determine the stability
of the ideal basic flow. In the existing literature on the stability of steady or unsteady
flows both these issues are invariably intertwined and no attempt will be made to
discuss them completely separately here.

It is well known that in the classical steady Taylor vortex experiments the presence
of stationary endwalls causes the basic flow to be locally quite different from the
target purely azimuthal flow in an infinitely long annulus. At Taylor numbers below
critical, the no-slip conditions associated with the presence of the endwalls causes
an imbalance: the nearby pressure field keeps the fluid particles in uniform circular
motion and a secondary circulation with radial and axial velocity components results
at the ends of the annulus. Both experimentally (Taylor 1923; Cole 1976) and
theoretically (Blennerhassett & Hall 1979) it is known that, provided the cylinders
are long enough, these secondary motions do not distort the basic flow far from the
ends of the cylinders and the critical conditions for physically realizable flow are
an excellent approximation to the predictions of the theory based on infinitely long
cylinders. However, it is known (Benjamin & Mullin 1981) that supercritical flow
in finite-length cylinders can be very different from that predicted on the basis of
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infinitely long cylinders and further that the flow obtained can be very sensitive to the
length of the annulus. For experiments aimed at determining the critical parameters
for shear modes in a Stokes layer the operating conditions for the apparatus would
have to be in the subcritical regime for any centripetal instabilities. Thus it would then
be expected that any end effects associated with centripetal instabilities are avoided.

While there appears to be no existing experimental or theoretical literature
indicating that a purely oscillatory flow in finite-length cylinders bounded by
stationary ends will be a good approximation to the infinite-cylinder model, it is
possible to argue that this is the case. As noted above, the source of the secondary
motion is the mismatch of the pressure field needed to maintain circular motion
and the velocity field associated with the no-slip condition on the stationary end
surfaces. In the steady Taylor vortex problem this discrepancy occurs over the whole
of the annular gap. However, in the purely oscillatory flow considered here, outside
the Stokes layer the fluid is essentially at rest and so the no-slip condition on the
endwalls imposes no extra conditions on the velocity field. It is only within the thin
Stokes layer on the outer cylinder that the basic flow (2.1) does not satisfy the no-slip
condition on the endwalls, and hence this is the only region where any secondary
motion can be generated by pressure mismatches. As the region capable of generating
any secondary flow in the oscillatory case is much smaller than in the steady case it
seems likely that any additional velocity components in the oscillatory flow will be
smaller than the secondary flow in the classical steady-flow case. Hence it is reasonable
to expect that end effects will not distort the basic unsteady flow significantly away
from the idealized flow (2.1).

The above argument is indirectly supported by the results from Blennerhassett
(1976) and Smith (1975) on unsteady flow in curved pipes, where the generation of
secondary flows in the cross-section of the pipe follows a similar mechanism to that
causing the end-region vortices in the Taylor vortex experiment. Both these authors
showed that for the secondary motion associated with the steady flow through a
curved pipe to be the same size as the steady streaming generated by the unsteady
component of the axial flow, the steady mean flow through the pipe must be smaller
than the amplitude of the oscillatory component by a multiple of the Stokes layer
thickness. The general conclusion here then is that steady secondary-flow effects
coming from oscillatory driving forces are much weaker than those coming from
steady driving forces. Thus, in the context of the suggested experiment with purely
oscillatory forcing of the basic flow, any steady streaming coming from the endwalls
of a relatively long annular region is expected to have a negligible effect on the
basic flow. This view is also supported by the fact that experiments were carried out
on modulated circular Couette flow (Donnelly 1964) with no reports of larger than
expected secondary flows either at the ends of the cylinder or in the middle of the
cylinder, where measurements are usually taken.

If it is accepted that the basic flow in a finite-length cylinder or annulus is a
good approximation to the required idealized flow then there is still the question
of persistence of the shear-mode instability in the finite geometry of the physical
apparatus. For the case of plane Poiseuille flow, the linear critical conditions for a
shear-mode instability, predicted on the basis of an infinitely wide channel (Thomas
1953; Reynolds & Potter 1967), were not accurately confirmed until the experimental
work of Nishioka, Iida & Ichikawa (1975). Their experiments used a low-noise wind
tunnel with a width-to-depth ratio of about 27; earlier experimental work of Kao &
Park (1970) in a rectangular duct with a width-to-depth ratio of 8 produced a critical
Reynolds numbers well below the theoretically predicted value. While these results are
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for shear modes in steady flows they indicate that the truncation of the flow domain
does not completely destroy the instability mechanism present in the theoretical
model. They also show that the experimentally determined stability properties can
depend on the geometric properties of the physical apparatus, which are ignored in
the idealized model flow.

As mentioned at the outset, the discrepancy between the theoretical predictions
of BB02 and BB06 and the available experiments, together with the inconsistencies
between those experiments themselves, motivated the work described here. Our aim
was to search for a system which could exhibit shear modes in an oscillatory flow
but avoid the inherent difficulties presented by the long entry lengths necessary for
oscillatory channel or pipe experiments. Our calculations suggest that the practical
generation of shear modes could well be feasible in the torsionally oscillating geometry
discussed here.

We thank the referees for their suggestions for improvements to the paper.
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